22,681 research outputs found

    Geometric Algebras and Extensors

    Full text link
    This is the first paper in a series (of four) designed to show how to use geometric algebras of multivectors and extensors to a novel presentation of some topics of differential geometry which are important for a deeper understanding of geometrical theories of the gravitational field. In this first paper we introduce the key algebraic tools for the development of our program, namely the euclidean geometrical algebra of multivectors Cl(V,G_{E}) and the theory of its deformations leading to metric geometric algebras Cl(V,G) and some special types of extensors. Those tools permit obtaining, the remarkable golden formula relating calculations in Cl(V,G) with easier ones in Cl(V,G_{E}) (e.g., a noticeable relation between the Hodge star operators associated to G and G_{E}). Several useful examples are worked in details fo the purpose of transmitting the "tricks of the trade".Comment: This paper (to appear in Int. J. Geom. Meth. Mod. Phys. 4 (6) 2007) is an improved version of material appearing in math.DG/0501556, math.DG/0501557, math.DG/050155

    Geometric and Extensor Algebras and the Differential Geometry of Arbitrary Manifolds

    Full text link
    We give in this paper which is the third in a series of four a theory of covariant derivatives of representatives of multivector and extensor fields on an arbitrary open set U of M, based on the geometric and extensor calculus on an arbitrary smooth manifold M. This is done by introducing the notion of a connection extensor field gamma defining a parallelism structure on U, which represents in a well defined way the action on U of the restriction there of some given connection del defined on M. Also we give a novel and intrinsic presentation (i.e., one that does not depend on a chosen orthonormal moving frame) of the torsion and curvature fields of Cartan's theory. Two kinds of Cartan's connection operator fields are identified, and both appear in the intrinsic Cartan's structure equations satisfied by the Cartan's torsion and curvature extensor fields. We introduce moreover a metrical extensor g in U corresponding to the restriction there of given metric tensor \slg defined on M and also introduce the concept a geometric structure (U,gamma,g) for U and study metric compatibility of covariant derivatives induced by the connection extensor gamma. This permits the presentation of the concept of gauge (deformed) derivatives which satisfy noticeable properties useful in differential geometry and geometrical theories of the gravitational field. Several derivatives operators in metric and geometrical structures, like ordinary and covariant Hodge coderivatives and some duality identities are exhibit.Comment: This paper is an improved version of material contained in math.DG/0501560, math.DG/0501561, math.DG/050200

    On non-formal simply connected manifolds

    Get PDF
    We construct examples of non-formal simply connected and compact oriented manifolds of any dimension bigger or equal to 7.Comment: 6 pages, Latex2
    corecore